Progress Report of the Development of the Japanese Virtual Observatory

January 9, 2003

Masatoshi OHISHI, Yoshihiko MIZUMOTO, Naoki YASUDA,

Yuji SHIRASAKI and Masahiro TANAKA

The National Astronomical Observatory of Japan
1. Recent Progress

The Japanese Virtual Observatory (JVO) project has been officially recognized as an observatory’s project since April 2002. The JVO team consists of five observatory members (Ohishi, Mizumoto, Yasuda, Shirasaki and Tanaka), one visiting professor from the Ochanomizu University of Japan, Prof. Masunaga, and several system engineers of the Fujitsu Ltd. Furthermore we have been collaborating with many information scientists in Japan, whose research interests are on the Grid technology. Some of them are key members of the Global Grid Forum.

Last year we succeeded to define a unified query language to access astronomical databases, the JVO QL, and constructed a prototype of the JVO to confirm if the JVOQL really works on a federated database through Grid technology. Thus this prototype is limited in its function not to include components for data analyses but for data access.

1.1 JVO Query Language (JVO QL)

It is necessary to access observational databases which are registered on the VO without knowing where they really are located. Thus we defined the JVO Query Language (JVO QL) as an upper compatible language with the SQL, adding several functions necessary to search for astronomical data. In JVO QL it is possible to not only catalog databases but astronomical images stored on the databases. Since Prof. Masunaga is an expertise on the database systems, he played a very important roll to develop the JVO QL. Figure 1 illustrates a sample of the JVO QL to search for astronomical catalogues.

 This sample contains several functions which are NOT included in the standard SQL. The function ‘’BOX’’ represents a region with the width, w, and the height, h, centered at the position shown by ‘’POINT’’. XMATCH is an option to extract an overlapped region, which is crucial for using multi-wavelength data.

1.2 Implementation of the JVO prototype (Version 1)

 We used the Java language to implement user interfaces (UI) where users describe their requests. We adopted the Globus Tool Kit Version 2 (GTK2), and designed the prototype so as to correspond to the OGSA. 

 The prototype runs as follows:

(1) A user provides a single search request described by the JVO QL on the UI;

(2) A JVO Controller starts to run, and it initiates the JVO QL Parser to run. The Controller also creates and the ‘’Observation Procedure (a Work Flow or a Plan)’’, executes the work flow, and modifies the work flow dynamically when necessary ;

(3) A JVO QL Parser reads the query, interprets it and creates individual requests, described in the standard SQL, to each database on the network;

(4) The database managers reads the requests and return the results to the JVO Controller;

(5) The JVO Controller displays the execution status in the logging window and status window;

(6) When the search has been successfully finished, the JVO Controller displays the results on the UI (This function is under construction, though).

Most of the above functions were implemented by using free softwares. Figure 2 show the schematic diagram of structure of our prototype.

 It is not practical to register all the user accounts on all the machines. Therefore we decided to use only one representative account within the JVO system to run all the tasks, because it is possible to map registered user accounts into this representative account in the file /etc/grid-security/grid-mapfile.

[image: image1.png]HMLAGE]

" File Edt View Go Bookmarks Tools Window Help

&

Back ~ Fonward ~ Reload Stop

~ [& hitp#iminazuki de.nao.ac jp:1B08Dvolclienthmiapplethirl

' ZHMIApplet |

Observation Name : faza

BOX(FOINT(201., 27.4), 010, 0.10)

and

1PHOT_8DSS_I-zPHOT_SDS8_Z = 0.0
ang

LPHOT_8DS9_| < 20.0

and

2ZPHOT_SDSS_Z<20.0

Chcenvalion Name=aaa
JobNo=0

CurrentPosition=31 4
Comment=ExecutionCantraller execute:senice obseving
recenve: :

Observation Name=asa

jobNo=0

CurrentPosition=3/ 4
Comment=ExecutionCantrallerexecute:senice obseving
recenve: 5

Observation Name=aaa

jobNo=0

CurrentPosition=3/ 4
Comment=ExecutionCantraller execute:senice abnormal end
receve: 5

Observation Name=aaa

jobNo=0

CurrentPosition=3/ 4
Comment=ExecutionCantraller.execute:senice abnormal end

Hostiame Commang

T Resut

NVOGLParser.sh

[fmished

nished

jvo-cuery.sh

nished

ustvoivo_deviinu 686 binSchedulersh

[faled

Docurnent; Done (3,066 secs)




Figure 1. An example of the JVOQL for catalogue access.

[image: image2.wmf]
Figure 2. A schematic diagram of the JVO Prototype (Version 1).

Our prototype environment consists of four machines (one Solaris8 machine and three Linux2.x machines) connected with the GbE within a subnet. Three observational databases – data of the Subaru SuprimeCAM, SDSS and 2MASS – are stored as individual database on three different machines. We adopted the Oracle and the PostgreSQL as the DBMSs since several DBMSs are being used in astronomical observatories. The user interface (JVO Client : top-left) was implemented as a Java applet so as to read and run from both the PC and WS (see Figure 3).

A user inputs a query request described by the JVO QL on the user interface, and pushes the RUN button on the top-right. Then the JVO Controller installed on the Solaris machine starts to run. The JVO Controller communicates with the UDDI Registry, creates a work flow (plan), and executes the workflow sequentially. The JVO QL Parser installed on a Linux machine (top-right) will be run first. The Parser is started through GTK2, analyses on which SQL commands to be run which database through communicating with the UDDI Registry on the Solaris machine, and returns the result to the Controller. Then the Controller recognizes that the step of the workflow has been broken down, revises the workflow, and runs the broken steps. Thus the JVO prototype has a function to dynamically revise and execute the workflow. This function further enables the prototype to find an alternative machine to execute a task in cases when machines that are identified to be asked to run are not available for some reasons.

We adopted the VOTable as the output file format to interchange data with other VOs.

[image: image3.wmf]Java2SE 1.4

Apache Tomcat

soapuddi

JDBC

UDDI 

Registory

/ 

Servlet

Engine

Java2SE 1.4

JVO Server

UDDI4J

JVO Controller

Globus Toolkit (Server)

JVO Service

(count)

SQL

library

Java2SE 1.4

Maintenance Tool

UDDI4J

UDDI Maintenance Tool

Hypertext

contents

Solaris8 

(Possible at 

Linux

)

Redhat

Linux

JVO Service

ORACLE

DB Service

Free Software

Commercial Software

In House Software

Function

Apache

ＳＯＡＰ

�@

Applet

DownLoad

Globus Toolkit (Client)

Redhat

Linux

PostgreSQL

(DBMS)

DB Service

The following free software is included by 

globus

toolkit.

•

OpenSSL

(Secure Socket Library)

•

OpenLDAP

(LDAP Server)

•

wu

-

ftpd (ftp server)

JVO Prototype System Architecture

�B

Find Service

Netscape Communicator

Java2 

Plugin

JVO Client

(applet)

JVO Client

�A

Request

Observation

Monitoring

UDDI

Data

SUBARU

SupCam

z

-

band

•

get & parse GSDL

•

pre condition check

•

execute Service

•

post condition check

•

register

•

update

•

delete

GSDL

(copy)

JVO Service

(select)

SQL

library

JVO Service

(image)

JVO Service

(X match)

Image

Data

GSDL

GridFTP

Image

Data

(copy)

�E

spawn Service

�D

execute Service

Check status

SUBARU

DataBase

JVO

Controller

Globus 

Toolkit

AVO

Globus 

Toolkit

NVO

Internet

Image

Data

SUBARU

SupCam

i

-

band

Globus Toolkit (Server)

JVO Service

SQL

library

SQL

library

JVO Service

(count)

JVO Service

(select)

Copy 

imate

data

by 

GridFTP

Copy 

imate

data

by 

GridFTP

JVO Service (X match)

JVO Service (image)

�B

get GSDL

�C

Get GSDL

by 

GridFTP

GSDL

�F

issue SQL

�C

’

Get GSDL

by 

GridFTP

�F

’

issue SQL

�D

’

execute Service

Image

Data

(copy)

SUBARU

DataBase

Gb

Ether

�E

’

spawn Service

Globus Toolkit (Server)

JVO Service

SQL

library

JVO Service

(select)

JVO Service (X match)

GSDL

Redhat

Linux

2

Mass

DataBase

PostgreSQL

DB Service

2

Mass DB

Image

Data

(copy)

Image

Data

Java2SE 1.4

Apache Tomcat

soapuddi

JDBC

UDDI 

Registory

/ 

Servlet

Engine

Java2SE 1.4

JVO Server

UDDI4J

JVO Controller

Globus Toolkit (Server)

JVO Service

(count)

SQL

library

Java2SE 1.4

Maintenance Tool

UDDI4J

UDDI Maintenance Tool

Hypertext

contents

Hypertext

contents

Solaris8 

(Possible at 

Linux

)

Redhat

Linux

JVO Service

ORACLE

DB Service

Free Software

Commercial Software

In House Software

Function

Apache

ＳＯＡＰ

�@

Applet

DownLoad

Globus Toolkit (Client)

Redhat

Linux

PostgreSQL

(DBMS)

DB Service

The following free software is included by 

globus

toolkit.

•

OpenSSL

(Secure Socket Library)

•

OpenLDAP

(LDAP Server)

•

wu

-

ftpd (ftp server)

JVO Prototype System Architecture

�B

Find Service

Netscape Communicator

Java2 

Plugin

JVO Client

(applet)

JVO Client

Netscape Communicator

Java2 

Plugin

JVO Client

(applet)

JVO Client

�A

Request

Observation

Monitoring

UDDI

Data

SUBARU

SupCam

z

-

band

•

get & parse GSDL

•

pre condition check

•

execute Service

•

post condition check

•

register

•

update

•

delete

GSDL

(copy)

JVO Service

(select)

SQL

library

JVO Service

(image)

JVO Service

(X match)

Image

Data

GSDL

GridFTP

Image

Data

(copy)

�E

spawn Service

�D

execute Service

Check status

SUBARU

DataBase

JVO

Controller

Globus 

Toolkit

AVO

Globus 

Toolkit

NVO

Internet

Image

Data

SUBARU

SupCam

i

-

band

Globus Toolkit (Server)

JVO Service

SQL

library

SQL

library

JVO Service

(count)

JVO Service

(select)

Copy 

imate

data

by 

GridFTP

Copy 

imate

data

by 

GridFTP

JVO Service (X match)

JVO Service (image)

�B

get GSDL

�C

Get GSDL

by 

GridFTP

GSDL

�F

issue SQL

�C

’

Get GSDL

by 

GridFTP

�F

’

issue SQL

�D

’

execute Service

Image

Data

(copy)

SUBARU

DataBase

Gb

Ether

�E

’

spawn Service

Globus Toolkit (Server)

JVO Service

SQL

library

JVO Service

(select)

JVO Service (X match)

GSDL

Redhat

Linux

2

Mass

DataBase

PostgreSQL

DB Service

2

Mass DB

Image

Data

(copy)

Image

Data


Figure 3. The User Interface of the JVO Prototype.

2　Future Issues

2.1　Large Overhead of the Globus Tool Kit

Overheads when each command are executed are TOO LARGE. They are typically 7-8 seconds ! Since the queries are mainly executed as the batch jobs, such a large overheads could be accepted. However if we consider that data analyses will be performed as the foreground jobs, which will be implemented in the next version of our prototype, such a large overheads are not accepted. One method to solve this severe problem is to utilize the OGSA. Anyhow we need to minimize the large overheads.

2.2 Implementation of Data Analyses Components

 We need to implement data analyses components to make our prototype the Virtual Observatory. In the past we have developed a distributed data analysis system for the Subaru telescope (the DASH – Distributed Astronomical Software Hierarchy), data analysis system for the radio telescopes at the Nobeyama Radio Observatory (a branch of the National Astronomical Observatory of Japan), the NEWSTAR, and its Java-version. Because we already have so many components to be used on the VO environment, we plan to implement these components into the next version of the JVO prototype in the year 2003.

2.3 Connection over the Firewall

 It is necessary to provide the VO functions over the firewall. Since astronomical data on public databases could be located in the DMZ, we may consider to locate the JVO system in the DMZ, too. Of course we need to consider how to avoid destructive accesses.

__________________________________




JVO Prototype








Display Workflows, Host Names & Commands, and Status of each step








Logging Info of the Execution











Run/Abort/Clear Button























Specify JVO QL





プロトタイプ画面





JVO





［実行先ホスト名、コマンド名、結果］





サービスの実行履歴・予定　（動的に変化）





ログ表示





サービス実行制御の





の指示





clear





実行・停止・





を指定





仮想観測名





拡張）





SQL





（分散データの





の指定　





JVO QL








