Introduction of JVO

- how to use the JVO for your science study -

Yuji Shirasaki, Masahiro Tanaka, Satoshi Kawanomoto

NAOJ ADAC

Contents

- 1. What is VO? Why do we need a VO?
- 2. Current status of JVO project
- 3. JVO demo (Data Search, Science use case)
- 4. The other VO projects
- 5. VO compliant application
 - Aladin (Image Viewer)
 - SpecView (Spectrum Viewer) S. Kawanomoto
 - TopCat (Catalog Table Viewer) M. Tanaka

What is VO?

VO is a collection of astronomical data archives and analysis tools that can be federated through computer networks to create an environment in which research can be conducted.

Real Observatory	Virtual Observatory	
Sky	Databases all over the world	
Telescope	Internet	
Instrument	Desktop Computer	
Astronomical Data	Astronomical Data	

As the databases can be accessed through the standard interface, they are easily integrated with the astronomical analysis tools.

Why do we need VO

· Classical astronomy was done by using one telescope of one organization.

 Many of modern astronomy has been done by using several telescopes of various organizations.

Problem in the classical system

- 1. User must access to the individual sites.
- 2. Query interface is different for each sites. Difficult for programming.
- 3. There is no reliable way to find a URL where astronomical data is provided.
- 4. There is no established procedure to publish your data to the astronomical community.

VO provides a framework for solving these problem:

- Standards on resource metadata management \rightarrow (3,4)
- Standards on data access interface \rightarrow (1,2)

Modern system in the VO framework

VO solve all the problem?

No!

- 1. Raw data reduction is still an obstacle for most of the researchers who are not familiar with the instrument.
- 2. Data quality control is crucial for interpretation of the data.
- 3. Observatory is the only competent to manage these issues.
- 4. Closer collaboration between VO project and observatory is crucial for establishing an environment where astronomical research can be conducted efficiently.

IVOA

International Virtual Observatory Alliance (IVOA)

- 16 countries and organizations
- Standardization of data exchange format, data access interface ...
- Development of VO software
- · Discussion on a mailing list
- Interoperability meeting (twice per year)
- 10 Working Groups
- 8 Interest Groups

http://www.ivoa.net/

Interconnected VOs in the World

JVO

JVO collaborators

Project Scientists NAOJ

- Mizumoto
- · Ohishi
- 0e
- · Shirasaki
- Tanaka
- Honda
- Kawanomoto

ICRR

Yasuda

Ochanomizu U.

Masunaga

System Engineers

Fujitsu Ltd. FUJITSU

- Kawarai
- Ishihara
- Tsutumi

SEC Ltd. M 株式会社セック

- Morita
- Nakamoto
- Kobayashi
- · Sakamoto

Current JVO activity

- · Development of software using the VO standard
 - VO portal service
 - VO data service development toolkit
 - Data analysis web service
- VO data service
 - SXDS data service
 - Subaru Suprime-Cam image data service
 - SDSS, 2MASS ...
- · VO enabled science
 - Cosmic string search
 - QSO-Galaxy clustering study
 - More coming ...

JVO Prototype 3 Demo

Open LDAP* authentication

* open source implementation of the Lightweight Directory Access Protocol.


```
Mozilla Firefox
                                                                                               _ | _ | ×
ファイル(F) 編集(E) 表示(V) 移動(G) ブックマーク(B) ツール(T) ヘルブ(H)
この XML ファイルにはスタイル情報が関連づけられていないようです。以下にドキュメントツリーを表示します。
- <vt:VOTABLE>
 - <vt:RESOURCE type="results">
     <vt:INFO name="QUERY STATUS" value="OK"/>

    <vt:TABLE>

      - <vt:FIELD ID="cat.dej2000" arraysize="*" datatype="char" name="cat.dej2000">
         <vt:DESCRIPTION>Declination J2000/vt:DESCRIPTION>
       </ri>
      - <vt:FIELD ID="cat. dej2000" arraysize="*" datatype="char" name="cat. dej2000"
       ucd="POS EQ DEC MAIN">
         <vt:DESCRIPTION>Declination (FK5) Equinox=J2000./vt:DESCRIPTION>
       </ri>
      - <vt:FIELD ID="cat.id" datatype="int" name="cat.id" ucd="ID_MAIN">
       - <vt:DESCRIPTION>
           Record number within the original table (starting from 1)
         </ri>
       </ri>
      - <vt:FIELD ID="cat.1 z" arraysize="*" datatype="char" name="cat.1 z">
         <vt:DESCRIPTION>[>*] limit or method flag on z</vt:DESCRIPTION>
       </ri>
      - <vt:FIELD ID="cat.name" arraysize="*" datatype="char" name="cat.name">
         <vt:DESCRIPTION>Most common name of the object</vt:DESCRIPTION>
       </ri>
      - <vt:FIELD ID="cat.not_radio" arraysize="*" datatype="char" name="cat.not_radio">
         <vt:DESCRIPTION>\\'*\\' if not detected in radio</vt:DESCRIPTION>
       </ri>
      - <vt:FIELD ID="cat.n rah" arraysize="*" datatype="char" name="cat.n rah">
         <vt:DESCRIPTION>[AOR] Approximative/Optical/Radio position/vt:DESCRIPTION>
       </rd>
      - <vt·FTFI.D.ID="catin_umag" arraysizo="*" datatyno="char" namo="catin_umag">
```


Registered Services

Status | Registry | Search | Result | Database | QSO Search | Image Viewer | Logout

select | Select the checked service and go to the search page.

No.	Check	ID	Title Type		Access URL	Country
0	О	<u>More</u> <u>Info</u>	Galaxy Evolution Explorer	SkyNode	<u>URL</u>	***
1	O	<u>More</u> <u>Info</u>	The Hubble Deep Field South	SkyNode	<u>URL</u>	***
2	0	<u>More</u> <u>Info</u>	The Hubble Deep Field North	SkyNode	<u>URL</u>	***
3	O	<u>More</u> <u>Info</u>	Deep Lens Survey	SkyNode	<u>URL</u>	***
4	o	More Info	THIRD REFERENCE CATALOGUE OF BRIGHT SkyNode GALAXIES		<u>URL</u>	***
5	O	<u>More</u> <u>Info</u>	Two Micron All Sky Survey (2MASS)	SkyNode	<u>URL</u>	***
6	c	<u>More</u> <u>Info</u>	Infrared Astronomical Satellite	SkyNode	<u>URL</u>	***
7	О	<u>More</u> <u>Info</u>	IRAS PSCz Redshift Survey Catalog	SkyNode	<u>URL</u>	***
8	0	<u>More</u> <u>Info</u>	Rosat	SkyNode	<u>URL</u>	***
9	0	More Info	the Subaru/XMM-Newton Deep Survey (SXDS) SkyNode Service	SkyNode	<u>URL</u>	•
		More				

_ | _ | ×

ァイル(E)	編集(E)	表示(<u>V</u>) 移動(<u>G</u>) ブックマーク(B) ツール(T) ヘルプ(H)			
70	· ·	<u>Info</u>	Filter i	SIMP	OVE	
71	О	<u>More</u> <u>Info</u>	2MASS All-Sky Quicklook Image Service	SIAP	URL	***
72	С	<u>More</u> <u>Info</u>	INES: The IUE Newly Extracted Spectra	SIAP	URL	-1H
73	С	<u>More</u> <u>Info</u>	ASCA SIA Service	SIAP	URL	•
74	c	<u>More</u> <u>Info</u>	JVO Publishing Registry	Registry	URL	•
75	0	<u>More</u> <u>Info</u>	NCSA Radio Astronomy Imaging Registry	Registry	URL	***
76	c	<u>More</u> <u>Info</u>	Minnesota Automated Plate Scanner	Registry	URL	unknown
77	С	<u>More</u> <u>Info</u>	CADC Registry	Registry	URL	unknown
78	С	More Info	CASU publishing registry	Registry	URL	unknown
79	О	More Info	Source-Extractor	Unknown	URL	unknown
80) 0	<u>More</u> Info	HyperZ	Unknown	URL	unknown

80 VO resources are available on JVO

User ID	User Name	Group	Last Login
yshirasa	Vser Name Yuji Shir	Tajlo	Fri Mar 11 01:06:42 JST 2005

Total memory = 77684kB Used momory = 58603kB (75%)

Science Use Case 1

Cosmic String Search

Cosmic String

- GUT theory predicts the production of a cosmic string at very early universe $t \sim 10^{-35} s$,
- Width < 10⁻²²m,
- Length ~ size of the Universe.
- Mass of 10 km string~ the Earth

Deep Wide field image:
Subaru/Suprim-Cam
Wide field Survey: SDSS

Search for Gravitational Lenses produced (?) by Cosmic Strings

SXDS data observed by Subaru

Results were obtained less than 5 min,

displaying SEDs

 It has been proven that VO can accelerate researches.

Cosmic String Search Result

Science Use Case 2 QSO/Galaxy Clustering Study

Q50 & Galaxies clustering study

- Origin of the large scale structure
 - · QSO is a tracer of high density regions in the universe ← hierarchical clustering model
 - Comparison between the observation and theoretical prediction is required.
- Origin of the Q50 activity
 - · Why is the QSO so powerful.
 - Test of the galaxy merger model

Workflow for studying the QSO/Galaxy clustering

- 1. Select QSO coordinates from the QSO catalog \rightarrow Query to the Skynode Catalog Database.
- 2. Search deep imaging data which covers the QSO regions → Query to the Skynode of Subaru Image Database
- 3. Create catalog from the imaging data → Invoke the SExtractor Web service.
- 4. Estimate the distance to the objects around the QSO → Invoke the HyperZ Web service
- 5. Try Clustering Analysis \rightarrow Invoke the clustering analysis web service.

Comparison among the major VO portals

	JVO Portal	DataScope	Open SkyQuery
Catalog	0	0	0
Image	0	0	X
Spectrum	0	0	X
Cross Match	0	X	0
Storage	0	X	0
Analysis	0	X	X

Road map of the JVO

	2005	2006	2007	2008
Development	→ database federation			
			→ workflo	w system
	single sig			
	user's st	orage —		——
Operation	open to	the		
	restricted persons			
	open t	to the public		
		int	roduce work	flow system
Open	*	* *	* *	*
Software	a data se	rvice toolkit is	released twic	e every year