Astronomical Data Analysis Software and Systems XV P.107
ASP Conference Series, Vol. XXX, 2005
C. Gabriel, C. Arviset, D. Ponz and E. Solano, eds.

Web Service Interface and Workflow Mechanism for JVO

Masahiro Tanaka, Yuji Shirasaki, Satoshi Kawanomoto, Satoshi Honda,
Masatoshi Ohishi, Yoshihiko Mizumoto

National Astronomical Observatory of Japan

Naoki Yasuda
Institute for Cosmic Ray Research, The University of Tokyo

Yasuhide Ishihara, Jumpei Tsutsumi

Fugitsu Lid.

Hiroyuki Nakamoto, Yuusuke Kobayashi, Michito Sakamoto
SEC Ltd.

Abstract.

Federation of astronomical data analysis services is one of main is-
sues of JVO development in 2005. We employed the Web Services as
an interface of analysis services, and designed the interface for various
astronomical analysis tools that require efficient data transfer. We also
designed a workflow mechanism for JVO on a basis of BPEL4WS, etc.
This mechanism enables users to construct their data query and analysis
sequences by combining multiple VO services.

1. Introduction

Japanese Virtual Observatory (JVO; Ohishi et al.) aims at a federated system
of distributed servers which provide catalog, image and spectrum searches and
analysis services. As a science use case of JVO, Shirasaki et al. describe a study
of QSO environment. This use case is a flow of multiple Web Services; image
extraction, catalog query, source extraction, calculation of photometric redshift
and clustering analysis. Previous JVO prototypes had “Scheduler” to generate
workflows from JVOQL (Tanaka et al. 2005). With such a mechanism, however,
users cannot flexibly construct their own workflows including analysis services.
In order for users to build workflows flexibly, we are designing a workflow lan-
guage and developing a system to execute workflows written in the workflow
language. With this mechanism, users are able to build workflows combining
data query and analysis services available in the VO framework. In this paper,
we describe the current design of the JVO workflow language and discuss the
interface of Web Services used for JVO workflow system.

1

2 Tanaka et al.

Diagram of Workflow Description Language

—
1 ><<rootnode>> <<abstract>>
o Process LooonntroI

.. :
~_
] 16— N
*

<Labstract>>

0.* 4 o \((abstract))
Variable Activity Control \
h

A
/ L
1 <<Labstract>>
<{<abstract>> .
abstrac (<abstract>> ol ConditionControl

SequenceActivity <<abstract>>

BasicActivity

ActivityContainer
if | | Switch
/ \ d -/

‘ Script ‘ ‘ Comman nvoke ‘

nput Output

Figure 1. XML Schema diagram of JVO Workflow Language

2. Workflow Description Language

We are developing JVO workflow language based on the design of a standard
workflow description language, Business Process Execution Language for Web
Services (BPEL4AWS). JVO workflow language is defined in XML. The XML
schema diagram of JVO workflow language is shown in Fig. 1. This workflow
language has the following types of elements:

e Variable definition (variable)

e Loop (for, while)

e Condition (if, switch)

e Sequential execution (sequence)

e Parallel execution (flow, parfor)

e Invoke external services (invoke)

e Invoke built-in Java classes (command)
JVO workflow language is equipped with a subset of the BPEL4WS functionality
required for a basic sequence of astronomical tasks. In addition, this language
has the capability to execute built-in Java class methods. This capability is
useful for efficient processing using Java classes. JVO workflow execution system
is under development and its first version is planed to be finished at the end of
2005.

Web Service Interface and Workflow Mechanism for JVO 3

3. Web Service Interface

In the course of workflow development, we considered the following technical
issues of Web Service interface.

3.1. DII (Dynamic Invocation Interface)

Web Services are usually accessed by creating Java proxy classes from WSDL.
This method, however, requires compilation of Java proxy code when Web Ser-
vices are used for the first time. In order to register new Web Services to JVO
system dynamically, we adopt Dynamic Invocation Interface (DII) mechanism
of JAX-RPC for workflow executor. Although the execution time using DII
is slightly longer than that using static proxy, it is negligible in total time of
Web Service calls. Another disadvantage of DII is that only primitive and pre-
registered classes can be used for arguments. We consider this is not a serious
problem if major data types used in VO are registered in advance.

3.2. Document Metadata for Web Service

When users build a workflow which invokes Web Services, they have to know
the meaning of argument and return values of the services. Although WSDL
includes interface information used by computer systems such as data types, it
is not intended to include meaning and usage information required for general
users. Therefore we developed a mechanism to distribute document metadata
of Web Services.

In our design, document metadata are embedded in the portType section
of VOResource metadata. Thus the document is seachable by JVO Registry.
Since the portType section comes from WSDL, embedding document metadata
in WSDL is a simple way to distribute them. This method, however, is not
practical because in most cases WSDL is automatically generated under the
frameworks of standard tools such as Apache Axis. For this reason we adopt
separate registration of WSDL and document metadata as follows; (1) Service
provider registers the URL of WSDL to JVO portal. (2) JVO portal extracts
information from WSDL and creates a template of VOResource. (3) Service
provider edits the template and registers it to JVO Registry. We plan to develop
a GUI registration tool to automate this process.

Acknowledgments. This work was supported by the JSPS Core-to-Core
Program and Grant-in-aid “Information Science” (15017289 and 16016292) car-
ried out by the Ministry of Education, Culture, Sports, Science and Technology
of Japan.

References

Ohishi M. et al. this volume, [07.9]
Shirasaki Y. et al. this volume, [P.105]
Tanaka M. et al. 2005, will be given at a later time, [P1.1.24]

