
Web Service Interface and Workflow Mechanism for JVOWeb Service Interface and Workflow Mechanism for JVO
Masahiro Tanaka, Yuji Shirasaki, Satoshi Kawanomoto, Satoshi Honda, Masatoshi Ohishi, Yoshihiko Mizumoto

(NAOJ), Naoki Yasuda, (U. Tokyo), Yasuhide Ishihara, Jumpei Tsutsumi (Fujitsu Ltd.),
Hiroyuki Nakamoto, Yuusuke Kobayashi, Michito Sakamoto (SEC Ltd.)

Abstract
Federation of astronomical data analysis services is one
of main issues of JVO development in 2005. We
employed the Web Services as an interface of analysis
services, and designed the interface for various
astronomical analysis tools that require efficient data
transfer. We also designed a workflow mechanism for
JVO on a basis of BPEL4WS, etc. This mechanism
enables users to construct their data query and analysis
sequences by combining multiple VO services.

URL: http://jvo.nao.ac.jp/

Workflow Description Language

Interface Documentation

Processes to register Web Services:
1. Service provider registers WSDL URL.
2. JVO registry receives WSDL and

generate template for VOResource.
3. Service provider edits the template

and register it.

Usage description is necessary for exploiting Astronomical analysis tools. To include
Usage description of Analysis Web Services in VOResource metadata, we extended
VOResource schema. We also designed processes for service providers to register a
documented VOResource to JVO Registry.

VOResource

Service Info
• identifier
• provider
• …

Interface Info
• URL to WSDL
• portType

• operation
• input
• output

• …

JVO extension:
<Documentation>
for interface description

We plan to develop Interactive
registration tool for easy

documentation.

WSDL

VOResource
Template

Web Service
Provider

JVO Registry

P.107

To achieve our requirement, we
are designing a workflow
language in XML. Its schema is
based on other workflow
systems such as BPEL4WS.

This language is capable of:
• Variable definition
• Controls (Loop, Condition)
• Parallel execution
• Invoke external services.
• Invoke built-in Java Classes

• DII (Dynamic Invocation Interface) of
JAX-RPC is used for workflow executer.
• Register new Web Services dynamically.
• Avoid re-compilation of JVO System.
• Restriction: Only primitive and pre-

registered classes can be used for
arguments.

Introduction

Issues for Implementation

JVO aims at a federated system of distributed servers of
catalog, image, spectrum and analysis services. As one
of JVO science use cases, a study of QSO environment
(see poster P.105) requires following steps:

Previous JVO prototypes had “Scheduler” to construct
workflows of parsed JVOQL. With such a mechanism,
however, users cannot flexibly construct a workflow
including analysis services. In the current JVO
development, we design a Workflow Description
Language in XML, and implement a control system to
manage workflows.

The following items were taken into account:
Described in XML. (or easier-to-write language?)
Users can construct a workflow by

 editing Templates, or
 writing workflow from scratch.

Available services are found from VOResource.
Usage of a service is also found from VOResource.
Service Provider can register their services easily.

Design of Workflow

• HTTP or FTP Staging is used for
efficient file transfer.
• Future option: VOSpace

Analysis Services

SkyNode

SExtractor
WebServices

HyperZ
WebServices

JVO
workflow
control

SIA Service

QSO Catalog

Source
Catalog

Subaru
image

Query

• JVO Workflow control system is under
development and its minimum set will be
finished at the end of this year.

Diagram of Workflow Description Language

<<rootnode>>

Process

<<abstract>>

Activity

<<abstract>>

LoopControl

<<abstract>>

Control

<<abstract>>

ConditionControl<<abstract>>

BasicActivity

<<abstract>>

SequenceActivity

Sequence Flow

Command

OutputInput

Switchif

invokeScript

Then Else Case Otherwise

Parfor

For

WhileVariables

Variable

<<abstract>>

ActivityContainer

1

1..*

1..*
1

1

1

0..1

10..*

1 1

0..1 0..1

1 0..1 1..* 0..1

1
1

1

1

