Astronomical Data Analysis Software and Systems XIV P1.1.24
ASP Conference Series, Vol. XXX, 2005
P. L. Shopbell, M. C. Britton, and R. Ebert, eds.

Japanese Virtual Observatory (JVO) prototype 2

Masahiro TANAKA, Yuji SHIRASAKI, Satoshi HONDA, Yoshihiko
MIZUMOTO, Masatoshi OHISHI

National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka,
Tokyo 181-8588, Japan

Naoki YASUDA

Institute for Cosmic Ray Research, University of Tokyo, 5-1-5
Kashiwanoha, Kashiwa, Chiba, 277-8582, Japan

Yoshifumi MASUNAGA
Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan

Yasuhide ISHIHARA, Katsumi ABE, Jumpei TSUTSUMI
Fugitsu Ltd., 1-9-83 Nakase, Mihama, Chiba, 261-8588, Japan

Hiroyuki NAKAMOTO, Yuusuke KOBAYASHI, Tokuo YOSHIDA,
Yasuhiro MORITA

Systems Engineering Consultants Co. Ltd., 9-8 Sakuragaoka, Shibuya,
Tokyo, 150-0031, Japan

Abstract. We describe the architecture of the Japanese Virtual Obser-
vatory (JVO) prototype system version 2. JVO aims at seamless access
to astronomical data archives stored in distributed data servers as well
as data analysis environment. For this purpose, it is important to estab-
lish a framework for access to remote servers, including remote procedure
calls (RPCs) and data transfer. A data request for distributed database
is described in the JVO Query Language. The JVO system parses the
query language, decomposes it into individual remote procedures such as
retrieval of catalog, image and spectrum and cross matching, and gener-
ate a work flow. Based on this work flow, remote procedures are called.
For RPCs of JVO prototype system 1, we employed Globus toolkit 2
(GT2). However, latency time of GT2 RPCs was too long for succes-
sive short-time jobs. Therefore, we employed Globus toolkit 3 (GT3)
for JVO prototype system 2. As a result, we find that Grid Service in
GT3 improves performance of RPC. In addition to Grid Service, Reli-
able File Transfer (RFT) is used for efficient data transfer. Astronomical
data stored in distributed servers are discovered through a registry server
which provides metadata discussed in the IVOA registry working group
and is built using a XML database.

2 Tanaka et al.

1. Introduction

JVO! is a project of National Astronomical Observatory of Japan. The objective
of JVO is to provide astronomers with seamless access to huge data archives
produced with astronomical telesopes of Japan such as Subaru telescope. JVO
is also participating in IVOA? (International Virtual Observatory Alliance) to
discuss standard protocols for the purpose of accessibility to astronomical data
archives from/to the world.

We have developed JVO prototypes iteratively; the JVO prototype version 1
(Proto 1) was developed in 2002, the prototype version 2 (Proto 2) in 2003, and
the prototype 3 is under development. In the course of Proto 1 development,
we defined JVO Query Language (JVOQL; Mizumoto et al. 2003) based on the
SQL through extending cross match and image retrieval functionalities. And
we constructed Proto 1 system which consists of distributed database and anal-
ysis servers federated through Grid (Ohishi et al. 2004, Shirasaki et al. 2004).
As a result, we confirmed that Proto 1 accepts properly query commands de-
scribed in JVOQL, and actually operates as a distributed database. However,
we found several problems, including the performance of remote execution and
data discovery. These issues are improved in JVO Proto 2 as described in this

paper.

2. System Design

The system configuration of JVO Proto 2 is shown in Figure 1, which is basi-
cally same as Proto 1. Technical components adopted for JVO prototypes are
compared in Table 1, and described in the following sections.

Table 1. Technical components adopted for JVO prototypes
Registry Grid middleware remote execution data transfer
Proto1 UDDI Globus v.2 globus-job-run GridFTP
Proto 2 XML DB Globus v.3 Grid Service RFT & SFS

3. Execution Controller

User’s query commands described by JVOQL are processed by the Controller.
The Controller cooperates with the following subcomponents; JVOQL Parser,
Scheduler and Executer. These components are written in Java language
and installed in the portal server. The JVOQL parser analyzes the syntax of
the JVOQL command and decomposes it into query elements. The Java code
to parse the syntax of the JVOQL is generated with JavaCC (Java Compiler
Compiler). The Scheduler receives an output of the parser, and generates a
work flow which consists of job elements for individual servers. Based on this

'http://jvo.nao.ac.jp/

*http://www.ivoa.net/

Japanese Virtual Observatory (JVO) prototype 2 3

p PY Database Server 1
] Registory Server
User's Operation areare f || [Woraren —
Globus Toolkit V3) Globus Toolkit V3

"
Sofariss Linux
T

Database Server 2

Query Editor .

I
Portal S%rver Dafta Search | PP
] XMatch
JVOQL Parser:
i1 Ml e L
Status Monitor E Scheduler Globus Toolkit V3| | >
/ (?
— - Linux
-
. v
o - Globus ° ° Analysis Server
o Toolkitv3 | Grid Service
Result Display GSISFS | Analysis Service
Web Browser
—
[]
= Linux []
User's Globus Toolkit V3

machine

Figure 1. JVO system configuration

work flow, the Controller calls the Executer which calls procedures on remote
machines.

4. Data Discovery

When the Controller performs a query for distributed data servers, it is neces-
sary to find the location of the requested data. Such information is retrieved
from a Registry server. For Proto 1, we constructed a registry server using
UDDI (Universal Description, Discovery, and Integration). UDDI is designed to
find services in the Web Services framework, however, UDDI is not necessarily
suitable for search services of complicated astronomical metadata. Therefore,
we redesigned the registry system for Proto 2. The contents of metadata are
defined so as to keep compatibility with the metadata standard proposed in
IVOA. We stored these metadata into an XML database product KAREAREA,
and enabled metadata search by XPath. We plan to use the OAI-PMH (Open
Archives Initiative Protocol for Metadata Harvesting) for exchanging metadata
between data servers and a registry server.

5. Remote Execution

Standard protocols for remote procedure calls (RPCs) are necessary for federa-
tion of astronomical databases distributed all over the world. For this purpose,
we considered to apply standard Grid middleware, Globus Toolkit, developed
by Globus Alliance?, and investigated its applicability to JVO. We constructed

*http://www.globus.org/

4 Tanaka et al.

Proto 1 using Globus Toolkit version 2 (GT2). However, the result showed that
elapsed time to execute a basic JVOQL example was more than 10 minutes
(Ohishi et al. 2004). This is probably because the globus-job-run command
used for Proto 1 is not designed for a series of light-weighted, i.e., pseudo-realtime
procedure calls. To improve the performance, we reimplement RPCs of JVO
Proto 2 using Grid Service introduced in Globus Toolkit 3 (GT3). The Grid
Service is based on the Web Services. After the implementation into Proto 2,
we examined two queries which take 2.3 and 13 seconds as actual processing
times in remote servers, respectively. The result is that elapsed times including
RPCs are 2.8 and 16 seconds, respectively. The measured overhead time is only
around 30 ms. Thus the performance of Proto 2 is much improved compared
with Proto 1. This result shows that Proto 2 system using Grid Service can be
a basis of practical virtual observatory systems.

6. Data Transfer

We employed two data transfer protocols for JVO Proto 2; one is the Reliable
File Transfer (RFT), and the other is the Self-certifying File System (SFS)?.
The RFT is one of the GT3 services, and it provides interfaces for recoverable
file transfer using the GridF'TP protocol. The RFT enables a portal server to
issue file copy commands between two remote hosts. This function is useful for
multi-server operation like cross match (XMatch). The SFS is a secure network
file system over the Internet. We find the SFS does not provide data transfer
service between remote hosts, which is a benefit of the RFT, since SFS server
and client processes cannot coexist on a single machine.

As mentioned above, we adopted Grid Service for remote execution, and
RFT and SFS for data transfer. However, the use of different protocols brings
complicated implementation. Furthermore, IVOA standard protocols like SIAP
(Simple Image Access Protocol) are implemented with single protocols like HTTP
or Web Services. Therefore, we are considering to utilize HT'TP or Web Services
for RPCs and data transfer in the next prototype and operational JVO systems.

Acknowledgments. This work was supported by the JSPS Core-to-Core
Program and Grant-in-aid “Information Science” (15017289 and 16016292) car-
ried out by the Ministry of Education, Culture, Sports, Science and Technology
of Japan.

References

Mizumoto, Y., et al. 2003, in ASP Conf. Ser., Vol. 295, ADASS XII, ed. H. E.
Payne, R. I. Jedrzejewski, & R. N. Hook (San Francisco: ASP), 96
Ohishi, M., et al. 2004, in ASP Conf. Ser., Vol. 314, ADASS XII, ed. F. Ochsen-

bein, M. Allen, & D. Egret (San Francisco: ASP), 296
Shirasaki, Y., et al. 2004, in ASP Conf. Ser., Vol. 314, ADASS XII, ed. F. Ochsen-
bein, M. Allen, & D. Egret (San Francisco: ASP), 46

‘http://www.fs.net/

